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Decay of discrete nonlinear Schrdinger breathers through inelastic multiphonon scattering
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We consider the long-time evolution of weakly perturbed discrete nonlinear &oges breathers. While
breather growth can occur through nonlinear interaction with one single initial linear mode, breather decay is
found to require excitation of at least two independent modes. All growth and decay processes of lowest order
are found to disappear for breathers larger than a threshold value.
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The study of intrinsically localized modes in anharmonicas
lattices, discrete breathershas yielded much attention dur- IH
ing the last decadésee, e.g., Ref$1,2]). In particular, their i, = =—C(AY)n— | n|?Un, 2)
existence as time-periodic solutions of nonlinear lattice equa- P
tions was proven under quite general conditip8ls and nu- ) ) )
merical schemes were developed for their explicit calculatiofvhere A is the discrete Laplacian, i) n=¢n 1+ a1
[4]. The generality of the concept of discrete breathers;” 2#n, and we will assum€&=>0 without loss of generality.
which provide very efficient means to localize energy, had addition to Hamiltoniar(1), a second conserved quantity,
led to numerous suggestions as to its application in context$'€ excitation normis defined as
where anharmonicity and discreteness are important, e.g., for 2
describing energy and charge transport and storage in bio- Nz; |l )
logical macromoleculed5]. Recently, discrete breathers
were experimentally observed in coupled optical waveguideIhe conservation laws for these two quantities can be ex-
[6], in charge-density wave systelfid, in magnetic systems pressed in terms of continuity equations, with flux densities

[8], and in arrays of coupled Josephson junctiffis for the Hamiltonian and norm given by,
Although a discrete breather under quite general condi- ) . .
tions is linearly stablg1,3,10 (and thus no perturbations Jy=—2CRe i 1(Pre1— ) ], (4)
grow exponentially, there are many questions remaining B *
concerning the long-time fate of perturbed breathers. In a Jy=2C My s, ®)

previous papefrll], some of these questions were addresse(f’espectively

considering a particular model: the discrete nonlinear Schro The single-site breather is a localized stationary solution

dinger (DNLS) equation. The interaction between stationary - At .

) : - 7to Eq.(2) of the formyr(t) = p,(A) e, wher is time
breathers and small perturbations corresponding to t'mel'nde?)endent with awsr#]gzle ?T?;(axi%"nuat a Iatg{c(gniite(see
periodic eigensolutions to the linearized equations of motioQa 9., Refs.[13,3,14). It exists for all A/C>0, and is 6’1
around the breather was investigated using a multiscale pef-~" T ey
turbational approach, and it was found that the nonlineairound state solution minimizing the Hamiltonighq. (1]

. . : or a fixed value of the normEq. (3)] (see, e.g., Ref.14)).
interaction between the breather and single-mode smal enoting the values of these quantities for the breather as

amplitude perturbations could lead to breathgrowth X
through generation of radiating higher harmonics, but not toH¢(A)(<O) andNy(A)(>0), respectively, we have

breatherdecay It is the purpose of this Brief Report to ex- dN, 1 dH,
tend these results to more general perturbations of stationary A - A ar Y ©
DNLS breathers. In particular, we find that while the sim-
plest growth process can be described as an inelastic scatt@roving the linear stability of the breathigl5], as well as the
ing process with a one-frequency incoming wave and an adcyapunov stability for norm-conserving perturbatidrg].
ditional outgoing higher-harmonic wave, the description of a  To describe the dynamics close to the breather, we intro-
decay process requires least twaincoming modes yielding  duce the perturbation expansi¢ef. Ref.[11])
outgoing modes with frequencies being linear combinations B 2
of the original ones. Un(t) =1dn+ Nen() + A" 70(1)

In order to make this Brief Report self-contained, we first FNBEL(L) F N2, (1) + - - Ll TAdY 7
recapitulate the main formalism from RéL1] (to which the
reader is referred for details; also see R&g] for a similar  wheree,(0) is the initial small-amplitude perturbation. Sub-
approach in continuous NLS modgl$Vith canonical conju-  stituting into Eq.(2) and identifying coefficients for consecu-
gated variablesi ¢} and{y}}, the DNLS equation can be tive powers of the small parameteryields forA® A1, \2 A8,
derived from the Hamiltonian etc:

_A¢n+C(A¢)n+|¢’n|2¢n:01 €))

; *1) — _ Z_E 4
H({Ilﬂn}’{wn}) ; C|¢n+1 ¢n| 2|¢n| (1) (E(A)é)nzol (9)
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(LD p) = — ¢* 2~ 2| €2, (100  and, with the “pseudoscalar” product defined from Etg),
the only nonzero product involving the zero-frequency
(LME) = —2¢% enpn—4daRe enn 1— | €n|%€n, (1)  modes is their cross-produfts]:
etc., where L£WMe),=ie,+C(A€)+2|hnl’ent et > nﬁisnzE d—M>o. (15)
—Ae€,. The zeroth order equatio(8) yields the breather n gA 2 dA

shape{¢,} (which for the single-site breather can be as- . . _
sumed real and positive without loss of generalithe first Let us now dISCl.,ISS the Iong-tlmg effects of a small'mmal
order equatior(9) is the linearization of the DNLS equation Préather perturbation, expanded in the above basis. The
for small breather perturbations, while the higher order equaS&cond-order correction to the linearized dynamics is given
tions describe the long-time dynamics on increasingly Ionge_Py the mhgm_oger!eous equau(ﬂﬂ). AS its nght-han(_j side
time scales. IS quad(atlc ine, it describes fundamental scattering pro-

The linearized solutions are conveniently obtained byggffizgpgg!vg% titc@r?ss'tsttv(\)l?an;gggfszrnizseusmlr']t% I:Err:az |2|rt]|al
substituting e,(t) = 2a(U,+W,)e '“'4 fa* (U* —W*)e' ! urbatione, ' wi uen-

gen(t)=2a(Uy + W) 287 (Up —Wq) cies{w®}, the right-hand side will contain the frequencies
{20}, {0+ 0, {|oW—w|}, and 0. Thus it acts as a
multiperiodic force localized at the breather regisimce all
0 Lo\ [{Uy} {U.} terms are multiplied byp,), and resonances with solutions
P ARUTA! =w AN to the homogeneous equati(®) typically yields a response
1 n n

for {,} which either diverges in timéresonance with dis-
with Hermitian operatorsC, and £, defined by(cf. Ref.

into Eq.(9). This yields(for real ¢,,) an eigenvalue problem
of the form

crete spectrupnor is spatially unboundedresonance with
continuous pajt

[16) In a standard way, the divergent parts can be removed by
LoW,=—C(AW),— ¢ﬁvvn+ AW,, (12 allowing for a slow, adiabatic time evolution of the breather
parameters. Similarly to what was done in Rdfl], where
£1U,=—C(AU),—3¢2U,+AU,. (13) the case of single-mode initial perturbations was analyzed in

detail, the divergence due to overlap between the static part
of the right-hand side of Eq(10) and the zero-frequency
modes can be shown to be equivalent to a time-independent
shift of the breather frequency. Writing A =Aq+\2A,,
whereA g is the unperturbed breather frequency, the second-
order shiftA, will be the sum of the shifts resulting from the
individual modes contained ig,(0). Thelatter was calcu-
lated in Ref[11] [cf. Eq. (31)], and generalizes for the mul-
timode case to

As the breather is linearly stable for &l [15], the eigenval-
uesw are real, and the eigenvectorfJ(,}, {W,}) can be
chosen real and normalized. The continu@pisonon spec-
trum of extended eigensolutions is obtained fiof— o (¢,
—0) yielding two uncoupled equations for the linear com-
binationsU,=W, . Considering, without loss of generality,
only the positive-frequency solutiors,,+W,~¢e'9" yields
the dispersion relatiorw=A+2C(1—cosq), so that the
continuous spectrum fow>0 is the intervalwe[A,A 1 i
+4C]. Isolated eigenvalues#0 outside the continuous A,=————— > ¢ ,——
spectrum give localized eigensolutions corresponding to dN,/dA =5 IA
breather internal modegl7,18: one spatially symmetric WM L _
“breathing” mode exists for & A/C=<1.7, and one anti- whe(g)e a N the initial amplitude for the mode
symmetric “translational” or “pinning” mode for G<A/C ({Un }:{M\_}) with frequencyw")- In general A, can be _
<1.1. (The variation of their frequencies with/C was either positive or nggatlvg, depending on the detailed spatial
shown in Fig. 1 of Ref[11]). Finally, there are also the Structure of the excited eigenmodes. ,
zero-frequency solutions to E¢@), obtained from the ansatz ~ The spatially unbounded response resulting from reso-
e,=U,+iW, . They can be written as a superposition of two Nances between the oscillating par_t of the right-hand side of
fundamental modes: the “phase modg19] W, = ¢, de- Eq._ (1Q) and ph_on_on modes physically cor_responds to the
scribing a rotation of the overall phase of the breather, an§Mission of radiation from the breather region for each os-
the “growth mode” [19] U,=dd,/dA (yielding e, cillation frequency belonging to t_he continuous spectrum of
=ad,loN+id,t) describing a change of breather fre- Eq. (9). The str(_ength of the radiation fields can b_e calculated
quency. as illustrated in Ref.[11] for second-harmonic (a(f))
This set of eigenvectorgincluding the zero-frequency resonancegct. Eq. (34), and the following discussidn
modes forms a basis for the space of solutions to Bj, in hegg W?.) g|V((a+)the corresponding  results fo(ri) two(j)mode
which an arbitrary initial perturbation can be expanded(®' *®”’=w'")) resonances (assuming o"’>w,
Eigenvectors {U E]i)},{wg)}) with different (rea) eigenval- without loss of generah?y Wr|t|Dg tTe coiresp(_)r}g;ng
uesw fulfill the orthogonality relations responses as 77%:): AU +wiH)e e
+EAET U~ W e e with AGY=a®al)  and
(0= o) UOWD* WUy =0, (14 Qi(j_)=a(‘)a(j)*, the functionsu{") andw!{*) are determined
n y

> 1a®23(u)2+ (W),
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—0™ Ly \[{ulH) g, [ AWPUP=uPWD} yielding the boundary conditiona(™) ,w(*)—r(=)e*ia")n
( c, —w<+>)({w<;>}) :7<{3uﬂ)u(n”1vv(n‘>w‘n“} + atnoen, wherer (et and
o) —A
When »*) belongs to the phonon band, the radiation field q(*):arcco€1— 2C )

strength will be proportional to the overlap between this _ . ] .
right-hand side and the corresponding continuous spectrufiom the linear dispersion relation.

eigenvector {U(i)} {V\/(i)}) which, using Eq(14), is ob- Let us now discuss the consequences of the second-order
tained as noh e A ' ’ radiation arising from the two-mode interaction for the

breather itself. Assume for simplicity that only two modes
with frequenciesn™ andw® (0> w?) are initially ex-
(£)_1 ) e 1) e 1) cited('ghe presence of other modes will contribute to orders 3
c®=33 g WL WOUP = UPWD) and highe), and that both modes belong to the continuous
" spectrum(the case of internal mode excitation requires some
+UMEUOUD FwOWD) ], (16) ~ modification; see Refl11], Sec. llIQ. Far away from the
breather, we assume a stationary regime which, in the most
general case whene#?, 20®, o), andw!™) all belong
Far away from the breather, the radiation field should correto the phonon spectrum, corresponds to the boundary condi-
spond to two identical outgoing propagating linear wavestions atn— =+ o:

|
l//nﬁeiAt[a(l)(eiiq(l)n_l_r(l)etiq(l)n)e—iw(l)t+a(Z)(equ(z)n_l_r(2)eiiq(2)n)e—iw(2)t+(a(l))Zr(zl)ei(tq(zl)n—2w(l)t)

+(a(2))2r(22)ei(tq(zz)n72w(2)t)+a(l)a(Z)r(+)ei(iq(+)n7w(+)t)+a(1)(a(2))*r(*)ei(iq(—)nfw(—)t)]. 17

Note that, in general, the stationary amplitudes for the outtV, write the time-averaged balance equations as

going fundamental waves will differ from those of the in-
coming (i.e., rM,r?=1); this is a consequence of reso- d<N>t:d_N¢A:<JM_OO)> —(I+2)) (18)
nances at the frequencies® and w® in Eq. (11) for the dt dA ' v
third-order fieldé, . For a general multimode perturbation, it

d(H), dH,.

is seen from Eq(11) that this correction takes the forni)
=1+3;a;;/a®|?, where the sum goes over all initially ex-
cited modegherej=1 and 2.

We then consider the conservation laws for the total nor

d
e —d—AA=<JH(_°°)>t_<JH(+°°)>t' (19

nﬁs the time average of the flux densitidg, and J,, are

o : : : . _additive quantities for small-amplitude plane waves of the
and the Hamiltonian, respectively, contained in some regio orm 4, = A6@- 2 the right-hand sides are readily ob-

around the breather. Assuming the breather frequendy : . )
be the only time-dependent parameter in the stationary ret?med from Eq.(17) using the general expressionl,

: i , =2|AJ]?C sinQ and J,,=QJ,, for the individual waves re-
gime we can, similarly to what was done in REf1], Sec. sulting from Eqs(4) and (5). Combining Eqs(18) and (19)

and using Eq(6) yields the time derivative of the breather

2.5255 ; \
frequency to order 4 in the mode amplitudgd anda(® as
. 4C
1 ; 1
25254 | AZ_dJ\Q,/dA la®)4riM|2singt + |a®)*
(2)
E i w 2)12cin (2
£ 25253 | =g —1)|r(2)|25|nq(2)
(2)
25252 | w . V12—
+|a(l)|2|a(2)|2ﬁ(|r(+)|zs|nq(+)_|r( )|Zs|nq( ))
w
2.5251 | , . . . : e
0 1000 2000 3000 4000 5000 +]a®)? 1—W)(1—|r(2)|2)sinq(2) : (20)
time w

FIG. 1. Time evolution of the total norn\/ contained in a re-
gion of 120 sites around a breather with frequercy 0.45, per-  For a single-mode initial excitatiora®=0, and only the
turbed along two eigenmodes with frequencieS’~3.00 and first, positive term of the right-hand side remains, so that we
0®=~2.47, respectivelyC=1). recover the resultEg. (55) in Ref.[11]] that the generation
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of second-harmonic radiation always leads to breatheindependently would yield a net outflow of negative Hamil-
growth However, in the two-mode case, expressi@gf) is  tonian energy from the breather region and thereby breather
in general not sign-definite, and in particular the contributiondecay, there will also be a contribution from the mixing be-
from the frequencyw(~) is always negative. It is therefore tween thew™ and »(®) modes arising from the third-order
natural to associate this radiation with tHendamental equation(11). This contribution would yield a net outflow of
lowest-order mechanism for breather decabhis can be Positive Hamiltonian energy ifr®|<1 and|r¥|>1, and
seen as a consequence of the Hamiltonian flux density beirfgpuld therefore contribute to breather growth. However, ex-
proportional to the frequency for plane waves. Thus the scaf€nsive numerical simulations for differeft, w(_) and o
tering toward the lower frequency(~) should yield a net bPelonging to this region of “pure”w(™ scattering have al-
flow of negative Hamiltonian energy out from the breather’ays shown that the net result is a lineggcreaseof the
region, to which the breather adapts by decreasing its fre_t;)reat_her f_requency, and ther_efore we believe it justified to
quency and amplitude according to E@). On the other identify this two-wave scatterlr_wg as the fundamental lowest-
hand, the generation of radiation with a higher frequencyPrder breather decay mechanisfig. 1).

»*) should analogously contribute to breather growth, as [N conclusion, we found that while in the DNLS model
for the second-harmonic cag@lso see Ref[20] for a simi- breather growth can result through interaction between the

lar explanation of breather decay in a Klein-Gordon modelPreather and single-mode initial perturbations, the descrip-
resulting from a resonance in the linearized equatjons. tion of breather decay requires simultaneous excitations of at

It is important to note, that whea™ and »(? are pho- least two independent linear modes. This confirms numerical
non modes, they fulfilA <w®,»@<A +4C, so that we results in Ref.[11], Figs. 5 and 6, also showing breather
have 0< 0@ — w@<4C and 20 <20 20@ W)+ @  decay from initially single-mode perturbations with larger
<2A+8C. Thus we see that second-order radiation carPMPlitude, as more frequencies became gradually excited,
only be generated if the breather frequency fulfills: @ e.g., through oscillatory wave instabiliti¢21]. We believe
<4C, since forA>4C the frequency' ™) is always below t_hat our approz_ach cogld be_useful to !J_nder_sta_nd '_[he proper-
the phonon band, while @),20®), and o) are always t!es Qf the s‘t‘anona_ry intensity pl‘Ot?’abI“t)./ distribution func-
above. Therefore, wheh >4C, all terms on the right-hand tion in the “negative temperature” regime of the DNLS
side of Eq.(20) necessarily vanish, arall growth and decay model[22], whe.re peTS'Ste”t Iocahzgd breathgrg were found,
processes of lowest order disappebilumerically, we found weakly interacting with small amplitude radiation. Finally,

[11] that this corresponds to breathers with a central-site in\—l’_|ve r_letma!rk }h;.t the BI\:LS m_?orllel |§Nnongenerlc 4 amontg
tensity |¢no|225.65. Therefore, these large-amplitude amitonian fatticé modets, as 1t has two conserved quanti-

. . . ties, and the DNLS breather has only one fundamental fre-
breathers are particularly stable, since all pqssmle grOthauency with no harmonics. Thus our approach cannot imme-
and decay processes result from third- and higher-order rgyjq o) he extended to other models exhibiting breathers such
diation processes, so that the rate of their growth or decays rermi-pasta-Ulam or Klein-Gordon lattices. However, as
must k_)e at least of order 6 in the initial mode amplitudes. ¢,. the |atter the DNLS equation is know(see, e.g., Ref,.
_To illustrate the fundamental Iowest—qr)der decay mecharoy)) g describe the small-amplitude dynamics for small in-
hism, we consider the PUs 2% wher (BEIO”QS tothe  tersite coupling, we believe that the breather growth and de-
phonon spectrum, wh|2Ie(2( 207, andw ™ are outside. o5y mechanisms described here are also relevant in these
Thus we haver§!=r{?=r("=0, and only the last two  gystems. This will be investigated in future work.
terms in Eq.(20) are nonzero. We note that|if®)| <1, the | am grateful to S. Aubry for initiating my interest in this
last term will pe positive, and we can therefore in general NOproblem and for valuable discussions, as well as to G. Kopi-
conclude that\ must be negative. The reason for this is that,dakis and K. /O Rasmussen for useful remarks. This work
although the scattering toward the lower frequency was financed by the European Commission through a TMR
from either of the two frequencies™ or »® considered Marie Curie Research Training grant.
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