
PHYSICAL REVIEW E, VOLUME 63, 037601
Decay of discrete nonlinear Schro¨dinger breathers through inelastic multiphonon scattering
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We consider the long-time evolution of weakly perturbed discrete nonlinear Schro¨dinger breathers. While
breather growth can occur through nonlinear interaction with one single initial linear mode, breather decay is
found to require excitation of at least two independent modes. All growth and decay processes of lowest order
are found to disappear for breathers larger than a threshold value.
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The study of intrinsically localized modes in anharmon
lattices,discrete breathers, has yielded much attention du
ing the last decade~see, e.g., Refs.@1,2#!. In particular, their
existence as time-periodic solutions of nonlinear lattice eq
tions was proven under quite general conditions@3#, and nu-
merical schemes were developed for their explicit calculat
@4#. The generality of the concept of discrete breathe
which provide very efficient means to localize energy, h
led to numerous suggestions as to its application in cont
where anharmonicity and discreteness are important, e.g
describing energy and charge transport and storage in
logical macromolecules@5#. Recently, discrete breathe
were experimentally observed in coupled optical wavegui
@6#, in charge-density wave systems@7#, in magnetic systems
@8#, and in arrays of coupled Josephson junctions@9#.

Although a discrete breather under quite general con
tions is linearly stable@1,3,10# ~and thus no perturbation
grow exponentially!, there are many questions remainin
concerning the long-time fate of perturbed breathers. I
previous paper@11#, some of these questions were addres
considering a particular model: the discrete nonlinear Sch¨-
dinger ~DNLS! equation. The interaction between stationa
breathers and small perturbations corresponding to ti
periodic eigensolutions to the linearized equations of mot
around the breather was investigated using a multiscale
turbational approach, and it was found that the nonlin
interaction between the breather and single-mode sm
amplitude perturbations could lead to breathergrowth
through generation of radiating higher harmonics, but no
breatherdecay. It is the purpose of this Brief Report to ex
tend these results to more general perturbations of statio
DNLS breathers. In particular, we find that while the sim
plest growth process can be described as an inelastic sc
ing process with a one-frequency incoming wave and an
ditional outgoing higher-harmonic wave, the description o
decay process requiresat least twoincoming modes yielding
outgoing modes with frequencies being linear combinati
of the original ones.

In order to make this Brief Report self-contained, we fi
recapitulate the main formalism from Ref.@11# ~to which the
reader is referred for details; also see Ref.@12# for a similar
approach in continuous NLS models!. With canonical conju-
gated variables$ icn% and $cn* %, the DNLS equation can be
derived from the Hamiltonian

H~$ icn%,$cn* %!5(
n

S Cucn112cnu22
1

2
ucnu4D ~1!
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i ċn5
]H
]cn*

52C~Dc!n2ucnu2cn , ~2!

where D is the discrete Laplacian, (Dc)n5cn111cn21
22cn , and we will assumeC.0 without loss of generality.
In addition to Hamiltonian~1!, a second conserved quantit
the excitation norm, is defined as

N5(
n

ucnu2. ~3!

The conservation laws for these two quantities can be
pressed in terms of continuity equations, with flux densit
for the Hamiltonian and norm given by,

JH522C Re@ċn11~cn11* 2cn* !#, ~4!

JN52C Im@cn* cn11#, ~5!

respectively,
The single-site breather is a localized stationary solut

to Eq.~2! of the formcn(t)5fn(L)eiLt, where$fn% is time
independent with a single maximumat a lattice site~see,
e.g., Refs.@13,3,14#!. It exists for all L/C.0, and is a
ground state solution minimizing the Hamiltonian@Eq. ~1!#
for a fixed value of the norm@Eq. ~3!# ~see, e.g., Ref.@14#!.
Denoting the values of these quantities for the breathe
Hf(L)(,0) andNf(L)(.0), respectively, we have

dNf

dL
52

1

L

dHf

dL
.0, ~6!

proving the linear stability of the breather@15#, as well as the
Lyapunov stability for norm-conserving perturbations@14#.

To describe the dynamics close to the breather, we in
duce the perturbation expansion~cf. Ref. @11#!

cn~ t !5$fn1len~ t !1l2hn~ t !

1l3jn~ t !1l4un~ t !1•••%ei *Ldt, ~7!

whereen(0) is the initial small-amplitude perturbation. Sub
stituting into Eq.~2! and identifying coefficients for consecu
tive powers of the small parameterl yields forl0,l1,l2,l3,
etc:

2Lfn1C~Df!n1ufnu2fn50, ~8!

~L (L)e!n50, ~9!
©2001 The American Physical Society01-1
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~L (L)h!n52fn* en
222fnuenu2, ~10!

~L (L)j!n522fn* enhn24fnRe@enhn* #2uenu2en , ~11!

etc., where (L (L)e)n[ i ėn1C(De)n12ufnu2en1fn
2en*

2Len . The zeroth order equation~8! yields the breather
shape$fn% ~which for the single-site breather can be a
sumed real and positive without loss of generality!, the first
order equation~9! is the linearization of the DNLS equatio
for small breather perturbations, while the higher order eq
tions describe the long-time dynamics on increasingly lon
time scales.

The linearized solutions are conveniently obtained
substitutingen(t)5 1

2 a(Un1Wn)e2 ivt1 1
2 a* (Un* 2Wn* )eivt

into Eq.~9!. This yields~for realfn) an eigenvalue problem
of the form

S 0 L0

L1 0 D S $Un%

$Wn%
D 5vS $Un%

$Wn%
D ,

with Hermitian operatorsL0 and L1 defined by~cf. Ref.
@16#!

L0Wn[2C~DW!n2fn
2Wn1LWn , ~12!

L1Un[2C~DU !n23fn
2Un1LUn . ~13!

As the breather is linearly stable for allL @15#, the eigenval-
uesv are real, and the eigenvectors ($Un%, $Wn%) can be
chosen real and normalized. The continuous~phonon! spec-
trum of extended eigensolutions is obtained forunu→`(fn
→0) yielding two uncoupled equations for the linear co
binationsUn6Wn . Considering, without loss of generality
only the positive-frequency solutionsUn1Wn;eiqn yields
the dispersion relationv5L12C(12cosq), so that the
continuous spectrum forv.0 is the interval vP@L,L
14C#. Isolated eigenvaluesvÞ0 outside the continuou
spectrum give localized eigensolutions corresponding
breather internal modes@17,18#: one spatially symmetric
‘‘breathing’’ mode exists for 0,L/C&1.7, and one anti-
symmetric ‘‘translational’’ or ‘‘pinning’’ mode for 0,L/C
&1.1. ~The variation of their frequencies withL/C was
shown in Fig. 1 of Ref.@11#!. Finally, there are also the
zero-frequency solutions to Eq.~9!, obtained from the ansat
en5Un1 iWn . They can be written as a superposition of tw
fundamental modes: the ‘‘phase mode’’@19# Wn5fn de-
scribing a rotation of the overall phase of the breather,
the ‘‘growth mode’’ @19# Un5]fn /]L ~yielding en
5]fn /]L1 ifnt) describing a change of breather fr
quency.

This set of eigenvectors~including the zero-frequency
modes! forms a basis for the space of solutions to Eq.~9!, in
which an arbitrary initial perturbation can be expande
Eigenvectors ($Un

( i )%,$Wn
( i )%) with different ~real! eigenval-

uesv ( i ) fulfill the orthogonality relations

~v ( i )2v ( j )!(
n

~Un
( i )Wn

( j )* 1Wn
( i )Un

( j )* !50, ~14!
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and, with the ‘‘pseudoscalar’’ product defined from Eq.~14!,
the only nonzero product involving the zero-frequen
modes is their cross-product@15#:

(
n

fn

]fn

]L
5

1

2

dNf

dL
.0. ~15!

Let us now discuss the long-time effects of a small init
breather perturbation, expanded in the above basis.
second-order correction to the linearized dynamics is gi
by the inhomogeneous equation~10!. As its right-hand side
is quadratic ine, it describes fundamental scattering pr
cesses involving at most two modes: assuming the in
perturbationen(0) to consist of a set of modes with freque
cies $v ( i )%, the right-hand side will contain the frequencie
$2v ( i )%, $v ( i )1v ( j )%, $uv ( i )2v ( j )u%, and 0. Thus it acts as
multiperiodic force localized at the breather region~since all
terms are multiplied byfn), and resonances with solution
to the homogeneous equation~9! typically yields a response
for $hn% which either diverges in time~resonance with dis-
crete spectrum! or is spatially unbounded~resonance with
continuous part!.

In a standard way, the divergent parts can be removed
allowing for a slow, adiabatic time evolution of the breath
parameters. Similarly to what was done in Ref.@11#, where
the case of single-mode initial perturbations was analyze
detail, the divergence due to overlap between the static
of the right-hand side of Eq.~10! and the zero-frequency
modes can be shown to be equivalent to a time-indepen
shift of the breather frequencyL. Writing L5L01l2L2,
whereL0 is the unperturbed breather frequency, the seco
order shiftL2 will be the sum of the shifts resulting from th
individual modes contained inen(0). The latter was calcu-
lated in Ref.@11# @cf. Eq. ~31!#, and generalizes for the mul
timode case to

L25
1

dNf /dL (
n

fn

]fn

]L (
i

ua( i )u2@3~Un
( i )!21~Wn

( i )!2#,

where a( i ) is the initial amplitude for the mode
($Un

( i )%,$Wn
( i )%) with frequencyv ( i ). In general,L2 can be

either positive or negative, depending on the detailed spa
structure of the excited eigenmodes.

The spatially unbounded response resulting from re
nances between the oscillating part of the right-hand side
Eq. ~10! and phonon modes physically corresponds to
emission of radiation from the breather region for each
cillation frequency belonging to the continuous spectrum
Eq. ~9!. The strength of the radiation fields can be calcula
as illustrated in Ref.@11# for second-harmonic (2v ( i ))
resonances@cf. Eq. ~34!, and the following discussion#;
here we give the corresponding results for two-mo
(v ( i )6v ( j )[v (6)) resonances ~assuming v ( i ).v ( j ),
without loss of generality!. Writing the corresponding
responses as hn

(6)5 1
2 Ai j

(6)(un
(6)1wn

(6))e2 iv(6)t

1 1
2 Ai j

(6)* (un
(6)* 2wn

(6)* )eiv(6)t, with Ai j
(1)5a( i )a( j ) and

Ai j
(2)5a( i )a( j )* , the functionsun

(6) andwn
(6) are determined

by
1-2
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S 2v (6) L0

L1 2v (6)D S $un
(6)%

$wn
(6)%

D 5
fn

2 S $Wn
( i )Un

( j )6Un
( i )Wn

( j )%

$3Un
( i )Un

( j )7Wn
( i )Wn

( j )%
D .

When v (6) belongs to the phonon band, the radiation fie
strength will be proportional to the overlap between t
right-hand side and the corresponding continuous spect
eigenvector ($Un

(6)%,$Wn
(6)%), which, using Eq.~14!, is ob-

tained as

c(6)5 1
2 (

n
fn@Wn

(6)~Wn
( i )Un

( j )6Un
( i )Wn

( j )!

1Un
(6)~3Un

( i )Un
( j )7Wn

( i )Wn
( j )!#. ~16!

Far away from the breather, the radiation field should co
spond to two identical outgoing propagating linear wav
u
n-
o-

it

-

rm
io

r
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yielding the boundary conditionsun
(6) ,wn

(6)→r (6)e6 iq(6)n

at n→6`, wherer (6);c(6) and

q(6)5arccosS 12
v (6)2L

2C D
from the linear dispersion relation.

Let us now discuss the consequences of the second-o
radiation arising from the two-mode interaction for th
breather itself. Assume for simplicity that only two mod
with frequenciesv (1) andv (2) (v (1).v (2)) are initially ex-
cited ~the presence of other modes will contribute to order
and higher!, and that both modes belong to the continuo
spectrum~the case of internal mode excitation requires so
modification; see Ref.@11#, Sec. III C!. Far away from the
breather, we assume a stationary regime which, in the m
general case when 2v (1), 2v (2), v (1), andv (2) all belong
to the phonon spectrum, corresponds to the boundary co
tions atn→6`:
cn→eiLt@a(1)~e7 iq(1)n1r (1)e6 iq(1)n!e2 iv(1)t1a(2)~e7 iq(2)n1r (2)e6 iq(2)n!e2 iv(2)t1~a(1)!2r 2
(1)ei (6q2

(1)n22v(1)t)

1~a(2)!2r 2
(2)ei (6q2

(2)n22v(2)t)1a(1)a(2)r (1)ei (6q(1)n2v(1)t)1a(1)~a(2)!* r (2)ei (6q(2)n2v(2)t)#. ~17!
he
-

r

we
Note that, in general, the stationary amplitudes for the o
going fundamental waves will differ from those of the i
coming ~i.e., r (1),r (2)Þ1); this is a consequence of res
nances at the frequenciesv (1) and v (2) in Eq. ~11! for the
third-order fieldjn . For a general multimode perturbation,
is seen from Eq.~11! that this correction takes the formr ( i )

511( ja i j ua( j )u2, where the sum goes over all initially ex
cited modes~here j 51 and 2!.

We then consider the conservation laws for the total no
and the Hamiltonian, respectively, contained in some reg
around the breather. Assuming the breather frequencyL to
be the only time-dependent parameter in the stationary
gime we can, similarly to what was done in Ref.@11#, Sec.

FIG. 1. Time evolution of the total normN contained in a re-
gion of 120 sites around a breather with frequencyL50.45, per-
turbed along two eigenmodes with frequenciesv (1)'3.00 and
v (2)'2.47, respectively (C51).
t-

n

e-

IV, write the time-averaged balance equations as

d^N& t

dt
5

dNf

dL
L̇5^JN~2`!& t2^JN~1`!& t, ~18!

d^H& t

dt
5

dHf

dL
L̇5^JH~2`!& t2^JH~1`!& t . ~19!

As the time average of the flux densitiesJN and JH are
additive quantities for small-amplitude plane waves of t
form cn5Aei (Qn2Vt), the right-hand sides are readily ob
tained from Eq. ~17! using the general expressionsJN
52uAu2C sinQ and JH5VJN for the individual waves re-
sulting from Eqs.~4! and~5!. Combining Eqs.~18! and~19!
and using Eq.~6! yields the time derivative of the breathe
frequency to order 4 in the mode amplitudesa(1) anda(2) as

L̇5
4C

dNf/dL F ua(1)u4ur 2
(1)u2sinq2

(1)1ua(2)u4

3S 2v (2)

v (1)
21D ur 2

(2)u2sinq2
(2)

1ua(1)u2ua(2)u2
v (2)

v (1)
~ ur (1)u2sinq(1)2ur (2)u2sinq(2)!

1ua(2)u2S 12
v (2)

v (1)D ~12ur (2)u2!sinq(2)G . ~20!

For a single-mode initial excitation,a(2)50, and only the
first, positive term of the right-hand side remains, so that
recover the result@Eq. ~55! in Ref. @11## that the generation
1-3
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of second-harmonic radiation always leads to breat
growth. However, in the two-mode case, expression~20! is
in general not sign-definite, and in particular the contributi
from the frequencyv (2) is always negative. It is therefore
natural to associate this radiation with thefundamental
lowest-order mechanism for breather decay. This can be
seen as a consequence of the Hamiltonian flux density b
proportional to the frequency for plane waves. Thus the s
tering toward the lower frequencyv (2) should yield a net
flow of negative Hamiltonian energy out from the breath
region, to which the breather adapts by decreasing its
quency and amplitude according to Eq.~6!. On the other
hand, the generation of radiation with a higher frequen
v (1) should analogously contribute to breather growth,
for the second-harmonic case.~Also see Ref.@20# for a simi-
lar explanation of breather decay in a Klein-Gordon mod
resulting from a resonance in the linearized equations.!

It is important to note, that whenv (1) andv (2) are pho-
non modes, they fulfillL<v (1),v (2)<L14C, so that we
have 0<v (1)2v (2)<4C and 2L<2v (1),2v (2),v (1)1v (2)

<2L18C. Thus we see that second-order radiation c
only be generated if the breather frequency fulfills 0,L
<4C, since forL.4C the frequencyv (2) is always below
the phonon band, while 2v (1),2v (2), and v (1) are always
above. Therefore, whenL.4C, all terms on the right-hand
side of Eq.~20! necessarily vanish, andall growth and decay
processes of lowest order disappear. Numerically, we found
@11# that this corresponds to breathers with a central-site
tensity ucn0

u2*5.65. Therefore, these large-amplitud
breathers are particularly stable, since all possible gro
and decay processes result from third- and higher-order
diation processes, so that the rate of their growth or de
must be at least of order 6 in the initial mode amplitudes

To illustrate the fundamental lowest-order decay mec
nism, we consider the ‘‘pure’’ case whenv (2) belongs to the
phonon spectrum, while 2v (1),2v (2), andv (1) are outside.
Thus we haver 2

(1)5r 2
(2)5r (1)50, and only the last two

terms in Eq.~20! are nonzero. We note that ifur (2)u,1, the
last term will be positive, and we can therefore in general
conclude thatL̇ must be negative. The reason for this is th
although the scattering toward the lower frequencyv (2)

from either of the two frequenciesv (1) or v (2) considered
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independently would yield a net outflow of negative Ham
tonian energy from the breather region and thereby brea
decay, there will also be a contribution from the mixing b
tween thev (1) andv (2) modes arising from the third-orde
equation~11!. This contribution would yield a net outflow o
positive Hamiltonian energy ifur (2)u,1 and ur (1)u.1, and
could therefore contribute to breather growth. However,
tensive numerical simulations for differentL, v (1) andv (2)

belonging to this region of ‘‘pure’’v (2) scattering have al-
ways shown that the net result is a lineardecreaseof the
breather frequency, and therefore we believe it justified
identify this two-wave scattering as the fundamental lowe
order breather decay mechanism~Fig. 1!.

In conclusion, we found that while in the DNLS mod
breather growth can result through interaction between
breather and single-mode initial perturbations, the desc
tion of breather decay requires simultaneous excitations o
least two independent linear modes. This confirms numer
results in Ref.@11#, Figs. 5 and 6, also showing breath
decay from initially single-mode perturbations with larg
amplitude, as more frequencies became gradually exc
e.g., through oscillatory wave instabilities@21#. We believe
that our approach could be useful to understand the pro
ties of the stationary intensity probability distribution fun
tion in the ‘‘negative temperature’’ regime of the DNL
model@22#, where persistent localized breathers were fou
weakly interacting with small amplitude radiation. Finall
we remark that the DNLS model is nongeneric amo
Hamiltonian lattice models, as it has two conserved qua
ties, and the DNLS breather has only one fundamental
quency with no harmonics. Thus our approach cannot imm
diately be extended to other models exhibiting breathers s
as Fermi-Pasta-Ulam or Klein-Gordon lattices. However,
for the latter the DNLS equation is known~see, e.g., Ref.
@21#! to describe the small-amplitude dynamics for small
tersite coupling, we believe that the breather growth and
cay mechanisms described here are also relevant in t
systems. This will be investigated in future work.
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